

Holy Trinity and S.Silas

Calculation Policy

Progression grids for written methods for addition,subtraction, multiplication and division

Simple progression in written methods for addition

Children need to be able to:

- recall addition pairs to $9+9$
- know all complements to 10
- add mentally a series of singledigit numbers, such as $5+8+4$
- count on in $1 \mathrm{~s}, 10 \mathrm{~s}$ and 100 s
- partition numbers in ways other than into tens and ones to help with bridging multiples of 10 and 100

Stage 1: Empty number line

The empty number line helps to record the steps on the way to calculating the total. The steps often bridge through a multiple of 10 .

Example:
$48+36=84$

Children need to be able to:

- partition numbers into hundreds, tens and ones
- recall addition pairs to $9+9$
- add multiples of 10 or 100 (such as $60+70$ or $600+700$) using a related fact $(6+7)$ and knowledge of place value - mentally add multiples of 100, 10 and 1 e.g. $800+130+12$

Stage 2: Partitioning

When adding larger numbers, it becomes less efficient to count on so partitioning is used. Partition into (hundreds) tens and ones, add to form partial sums and then recombine.

Partitioning all the numbers mirrors the standard column method where ones are placed under ones and tens under tens etc.

Example:
Partitioned numbers are written under one another:

$$
\begin{aligned}
47+76 & =40+7 \\
& =70+6 \\
& 110+13=123
\end{aligned}
$$

$375+567=300+70+5$
$500+60+7$
$800+130+12=942$

Stage 3: Expanded column method

The expanded method leads children to the more compact column method so that they understand the structure and efficiency of it.

The amount of time that should be spent teaching and practising the expanded method will depend on how secure the children are in their recall of number facts and in their understanding of place value.

Example:
Write the numbers in columns:

Add the ones first
47
$\frac{776}{13}$
$\frac{110}{123}$

Discuss how adding the ones first gives the same answer as adding the tens first. Refine over time to consistently adding the ones digits first.
The addition of the tens in the calculation $47+76$ is described as 'Forty plus seventy equals one hundred and ten', stressing the link to the related fact 'Four plus seven equals eleven'.

Stage 4: Column method

The method is then shortened and when the column total is a two-digit number, the tens (or hundreds) are carried over into the next column. Use the words 'carry ten' or 'carry one hundred', not 'carry one'.

Example:

Once learned, this method is quick and reliable. Later, extend to adding three two-digit numbers, two three-digit numbers, and numbers with different numbers of digits. This method of can also be used to add decimals.

Simple progression in written methods for subtraction

Children need to be able to

- recall all addition and subtraction facts to 20
- subtract multiples of 10 (such as $160-70$) using the related subtraction fact $(16-7)$ and their knowledge of place value
- know all complements to 10 and 100

Stage 1: Empty number line

Empty or numbered lines are a useful way of modelling processes such as bridging through multiples of ten. The steps can be recorded by counting on or back.

Find the difference by counting on:

$326-178=148$

Counting back example:

The steps may be recorded in a different order or combined. With practice children will record less information and decide whether to count on or back

Children need to be able to

- partition two-digit and three-digit numbers into multiples of one hundred, ten and one
- partition numbers in different ways. e.g. 74 into $70+4$ or $60+14$
- subtract mentally a single-digit number or a multiple of 10 from a two-digit number
- add the totals (of the hundreds, tens and ones columns) mentally

Stage 2: Coulumn counting on method for Subtraction	Stage 3: Decomposition
Example Set calculation out as below. Use the lower integer as your starting point and the larger integer as your 'target number.' Round lower to the next multiple of 10 . The jump to the multiple of 10 before your target number, before finally arriving at your target number, e.g. Add all numbers together to find the difference.	$\begin{array}{r} 67^{1} 4 \\ -27 \\ \hline 47 \end{array}$ Say, "60-20" or, "6 tens - 2 tens" not, " 6 - 4"
Example Set calculation out as below. Use the lower integer as your starting point and the larger integer as your 'target number.' Round lower to the next multiple of 10 . Then jump to the next multiple 100, then the multiple of 100 before your target number, before doing one final big jump to your target number, e.g. 563 271 -	$\begin{array}{r} { }^{4} 5^{1} 63 \\ -271 \\ \hline 292 \end{array}$

9 (to make 280)
20 (to make 300)
200 (to make 500)

Add all numbers together to find the difference.

63 (to make 563
$\overline{292}$

Say, "60-20" or, " 6 tens -2 tens" not, " $6-4$ "

Simple progression in written methods for multiplication

children need to be able to

- count in steps
- understand multiplication as repeated addition

Stage 1: Repeated addition
Children start by understanding multiplication as arrays and repeated addition. They use this understanding to help them work out multiplication facts they cannot recall quickly

Example:

For ' 8×5 ', children picture:

> 00000
> 00000
> 00000
> 00000
> 00000
> ○○○○○
> 00000
> ○○○○○
> 00000000 00000000
> or 00000000
> or 00000000 00000000
> They use repeated addition to work out the calculation:
> $\begin{array}{lllllllll}0 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40\end{array}$

Recording of the steps on the number line may be refined as understanding and knowledge of facts develops:

Example:

12×6

This will support children in learning their tables using known facts and in understanding the distributive law which they will apply later when using the grid method

Children need to be able to:

- partition numbers into multiples of one hundred, ten and one and in other ways
- recall multiplication facts to 10×10
- work out products such as $70 \times 5,70 \times 50$, 700×5, or 700×50, using the related fact, 7×5, and an understanding of place value - add combinations of numbers mentally or using a written method

Stage 2: Grid method
When multiplying a 1-digit number by a 2-digit number, children may choose to partition the numbers in different ways:
Example: For 7×38

x	30	8
7		

Larger number along the top

Ensure that children understand the relationship between 7×3 and 7×30 and are
not simply 'adding a nought'
The same method can also be applied when multiplying a 1-digit number by a 3-digit number:

Simple progression in written methods for division

Children need to be able to:

- understand division as grouping and sharing
- understand multiplication and division as inverse operations
- recall multiplication and division facts to 10×10
- understand remainders
- derive larger multiples using known facts e.g. $10 \times 3=30 \rightarrow 20 \times 3=60$
- add multiples mentally and work out differences

Stage 1: Repeated addition

When it is not appropriate to use a sharing method for division and the division fact is not known, repeated addition (using the relationship between multiplication and division) can be used.

Example without remainder:
$40 \div 5$
Ask "How many 5 s in 40?"

$=8$ fives

Example with remainder:
$38 \div 6$
remainder of 2
+6+6+6+6+6+6+2+6
$\begin{array}{llllllll}0 & 6 & 12 & 18 & 24 & 30 & 36 & 38\end{array}$
For larger numbers, when it becomes inefficient to count in single multiples, bigger jumps can be recorded using known facts.

Example without remainder:

This could either be done by working out the numbers of threes in each jump as you go along (10 threes are 30, another 10 threes makes 0 , and another 7 threes makes 81. That's 27 threes altogether) or by counting in jumps of known multiples of 3 to reach $81(30+30+21)$ then working out the number of threes in each jump.

Example with remainder:
$158 \div 7$

10 sevens are 70 , add another 10 sevens is 140 , add 2 more sevens is 154 add 2 makes 158 . So there are 22 sevens with a remainder of 2 .
The remainder is indicated above the jump rather than inside it, so that
children do not mistakenly add 10,10, 2 and 2 and get an answer of 24 .

Use with the most able children who have a secure understanding of all the previous steps.

- Use known facts
- Use mulitples of $1,2,5,10$ and 20 to derive facts

Stage 3: Short division
Example without remainder:
$81 \div 3$
27
3
$8^{2} 1$

Children use their knowledge of the 3 times table to find, "How many 3 s in 80 where the answer is a multiple of 10?" This gives 20 threes (since 30 threes would be too many), with 20 remaining (2 tens are carried over to the next column) Now ask: 'How many threes in 21 '.

Example with remainder:

$$
6 \longdiv { 4 7 \mathrm { r } 2 }
$$

Once children's understanding of this method is secure they might shorten their dialogue to:
"How many 6s in 28?"
"4 remainder 4"
"How many $6 s$ in 44?"
" 7 remainder 2"
BUT ensure children have a secure understanding of what they are doing and are able to use their knowledge of related facts to either make a rough estimate first or have an idea about whether their final answer is reasonable or not.
Division with decimals
Division wit the the traditional long method

